Photomultiplier Tube

2-Inch Diameter, 10-Stage, Head-On Type
Bialkali Photocathode of High Quantum Efficiency
Circular-Cage Electrostatically-Focused Dynode Structure
For use in pulse counting and other low light
level detection and measurement systems

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing voltages as shown in Table I, except as noted.

With E =	$1500 \ vols$	s except	as noted
----------	---------------	----------	----------

	Min.	Typ.	Max.	
Sensitivity				
Radiant ⁹ at				
4000 angstroms	-	3.9×10^4	-	A/W
Cathode Radiant ^h				
at 4000 angstroms	-	0.079	-	A/W
Luminous:				
With tungsten				
light source i	13 _	33 _	200	A/lm
With blue light source k	$2x10^{-5}$	5x10 ⁻⁵	3x10-4	Α
Cathode Luminous:				
With tungsten		_		
light source ^m	- 10	6.7×10^{-5}	-	A/lm
With blue light source ⁿ	$8x10^{-10}$	$1x10^{-9}$	-	Α
Quantum Efficiency				
at 4000 angstroms	-	24 _	-	%
Current Amplification	-	$5x10^{5}$	-	
Anode Dark Current ^p	-	2.4×10^{-10}	$5x10^{-10}$	Α
Equivalent Anode-		$3 \mathrm{x} 10^{-11} \mathrm{q}$,
Dark-Current Input	{ -		-	lm
	1-	2.5×10^{-14} r	-	W
Dark-Pulse Spectrum ^s	-	(x)	-	
Pulse-Height Resolution	-	9	-	%
Anode-Pulse Rise Time ",".	-	2.3×10^{-9}	-	\mathbf{s}
Electron Transit Time ^{u,w}	-	2.7×10^{-8}	-	\mathbf{s}

^aMade by Corning Glass Works, Corning, New York 14830.

^bMade by Cinch Manufacturing Co., 1026 S. Homan Ave., Chicago, Ill. 60624

^cMade by James Millen Manufacturing Co., 150 Exchange St., Malden, Mass. 02148

^eAveraged over any interval of 30 seconds maximum.

f Tube operation at room temperature or below is recommended.

This value is calculated from the typical luminous sensitivity rating using a conversion factor of 1190 lumens per watt.

hThis value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1190 lumens per watt.

These values are calculated as shown below:

Luminous Sensitivity (A/lm) = Anode Current (with blue light source) (A)

0.15 x Light Flux of 1 x 10-5 (lm)

The value of 0.15 is the average value of the ratio of the anode current measured under the conditions specified in footnote (k) to the anode current measured under the same conditions but with the blue filter removed.

kUnder the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C. S. No.5-58, polished to 1/2 stock thickness — Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 10 microlumens.

^mThis value is calculated as shown below:

Cathode Luminous
Sensitivity (A/lm) =

Cathode Current (with blue light source) (A)

0.15 x Light Flux of
1 x 10-4 (lm)

The value of 0.15 is the average value of the ratio of the cathode current measured under the conditions specified in footnote (m) to the cathode current measured under the same conditions but with the blue filter removed.

ⁿUnder the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C. S. No.5-58, polished to 1/2 stock thickness — Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 100 microlumens and 200 volts are applied between cathode and all other electrodes connected as anode.

PAt a tube temperature of 22° C. Light incident on the cathode is transmitted through a blue filter (Corning C. S. No.5-58, polished to 1/2 stock thickness). The light flux incident on

the filter is 10 microlumens. The supply voltage (E) is adjusted to obtain an anode current of 10 microamperes. Sensitivity of the 4518 under these conditions is approximately equivalent to 7 amperes per lumen. Dark current is measured with no light incident on the tube.

- **q**With supply voltage (E) adjusted to give an equivalent luminous sensitivity of 7 amperes per lumen.
- At 4000 angstroms. This value is calculated from the EADCI value in lumens using a conversion factor of 1190 lumens per watt.
- Measured under the following conditions: A Nuclear Data Model No.ND-180 Multichannel Pulse-Height Analyzer is used. The single-photoelectron pulse height is established by fully illuminating the photocathode with a weak light source, such as a tungsten-filament lamp operated at a low color temperature, to assure the high probability of single photoelectron emission from the photocathode of the 4518. The intensity of the light source is adjusted for approximately 50 per cent counting loss. The dark-pulse spectrum is then obtained, using the same gain setting of the Multichannel Pulse-Height Analyzer, with the light source removed.
- †Pulse-height resolution is defined as the quotient of the full width of the photopeak at half height by the pulse height at maximum count rate under the following conditions: The 662 keV photon from an isotope of cesium having an atomic mass of 137 (Cs¹³⁷) and a cylindrical 2" x 2" thallium-activated sodium-iodide scintillator [NaI(T1)-type 8D8] are used. This scintillator is manufactured by the Harshaw Chemical Corporation, 1945 East 97 Street, Cleveland 6, Ohio, and is rated by the manufacturer as having a resolution capability of 7.5%. The Cs¹³⁷ source is in direct contact with the metal end of the scintillator. The faceplate end of the crystal is coupled to the 4518 by a coupling fluid such as Dow Corning Corp., Type DC200 (viscosity of 60,000 centistokes) Manufactured by the Dow Corning Corp., Midland, Michigan, or equivalent.
- Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of (E) between cathode and dynode No.1; 1/12 of (E) for each succeeding dynode stage; and 1/12 of (E) between dynode No.10 and anode. Focusing electrode potential is adjusted as shown in Table I.
- Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under

conditions with the incident light fully illuminating the photocathode.

When the electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

^{*}See accompanying Typical Dark-Pulse Spectrum.

TABLE I				
TYPICAL POTENTIAL DISTRIBUTION				
Between:	7.75% of Supply Voltage (E) Multiplied by:			
Cathode and Dynode No.1	1.8			
Dynode No.1 and Dynode No.2	1.4			
Dynode No.2 and Dynode No.3	1.5			
Dynode No.3 and Dynode No.4	1.2			
Dynode No.4 and Dynode No.5	1.0			
Dynode No.5 and Dynode No.6	1.0			
Dynode No.6 and Dynode No.7	1.0			
Dynode No.7 and Dynode No.8	1.0			
Dynode No.8 and Dynode No.9	1.0			
Dynode No.9 and Dynode No.10	1.0			
Dynode No.10 and Anode	1.0			
Anode and Cathode	12.9			

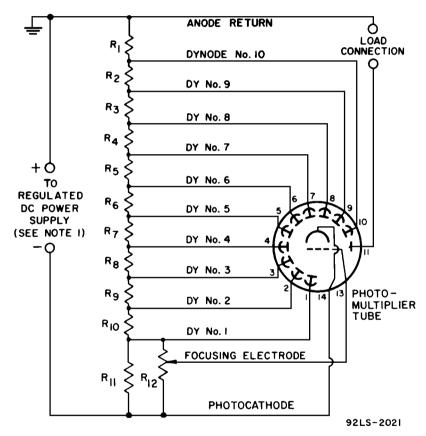
Focusing Electrode is connected to arm of potentiometer between cathode and dynode No.1. The focusing-electrode voltage is varied between 10% and 60% of dynode No.1 potential (referred to cathode) to give maximum anode current.

OPERATING CONSIDERATIONS

The base pins of the 4518 fit a diheptal 14-contact socket, such as Cinch-Jones No.3M14 or equivalent. The socket should be made of high-grade, low-leakage material, and should be installed so that incident light falls on the face end of the tube.

The operating stability of the 4518 is dependent on the magnitude of the anode current. The use of an average anode current well below the maximum rated value of 0.5 milliampere is recommended when stability of operation is important. When stability is of prime importance, the use of an average anode current of 1 microampere or less is recommended.

Electrostatic and magnetic shielding of the 4518 is ordinarily required. When a shield is used, it must be at cathode potential.

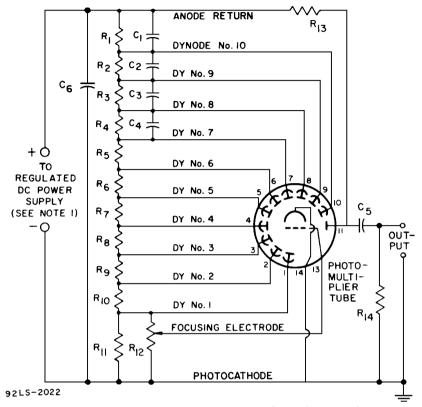

The *high voltages* at which the 4518 is operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages. Precautions should include the enclosure of high-potential terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatus is required.

Accompanying typical voltage-divider arrangements are recommended for use with the 4518. The resistance values for the voltage dividers range from 10,000 ohms per stage to 1,000,000 ohms per stage. The choice of resistance values for any voltage-divider network is usually a compromise. If low values of resistance per stage are utilized, the power drawn from the regulated power supply and the required power rating of the resistors increase. Phototube noise may also increase due to heating if the divider network is mounted near the photocathode.

The use of high resistance values per stage may cause deviation from linearity if the voltage-divider current is not maintained at a value of at least 10 times that of the maximum value of anode current, and may limit anode-current response to pulsed light. The latter effect may be reduced by connecting capacitors between the tube socket terminals for dynodes No.7 and No.8, dynodes No.8 and No.9, dynodes No.9 and No.10, and

between dynode No.10 and anode return. In addition to non-linearity and pulse-limiting effects, the use of resistance values exceeding 10 megohms per stage make the 4518 more susceptible to leakage effects between terminals with possible resulting deviation in interstage voltage leading to a loss of current amplification.

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT WHICH PERMITS DIRECT COUPLING TO THE ANODE



R₁ through R₇: 390,000 ohms, 1/2 watt
R₈: 470,000 ohms, 1/2 watt
R₉: 620,000 ohms, 1/2 watt
R₁₀: 560,000 ohms, 1/2 watt
R₁₁: 720,000 ohms, 1/2 watt

 R_{12} : 5 megohms, 1/2 watt, adjustable

- Note 1: Adjustable between approximately 500 and 2000 volts dc.
- Note 2: Component values are dependent upon nature of application and output signal desired.

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT FOR USE IN SCINTILLATION-COUNTING APPLICATIONS

 C_1 : 0.05 µF, 500 volts (dc working)

 C_2 : 0.02 μ F, 500 volts (dc working) C_3 : 0.01 μ F, 500 volts (dc working)

 C_4 : 0.005 μ F, 500 volts (dc working)

 C_5 and C_6^4 : 0.005 μ F, 3000 volts (dc working)

R₁ through R₇: 390,000 ohms, 1/2 watt

 R_{8} : 470,000 ohms, 1/2 watt

R₉: 620,000 ohms, 1/2 watt

 R_{10} : 560,000 ohms, 1/2 watt

 R_{11} : 720,000 ohms, 1/2 watt

 R_{12} : 5 megohms, 1/2 watt, adjustable

 R_{13}^{12} : 1 megohm, 1/2 watt

 R_{14}^{-1} : 100,000 ohms, 1/2 watt

- Note 1: Adjustable between approximately 500 and 2000 volts dc.
- Note 2: Capacitors C₁ through C₆ should be connected at tube socket for optimum high-frequency performance.
- Note 3: Component values are dependent upon nature of application and output signal desired.

TERMINAL DIAGRAM (Bottom View)

Pin 1: Dynode No.1

Pin 2: Dynode No.2

Pin 3: Dynode No.3

Pin 4: Dynode No.4

Pin 5: Dynode No.5

Pin 6: Dynode No.6

Pin 7: Dynode No.7

Pin 8: Dynode No.8

Pin 9: Dynode No.9

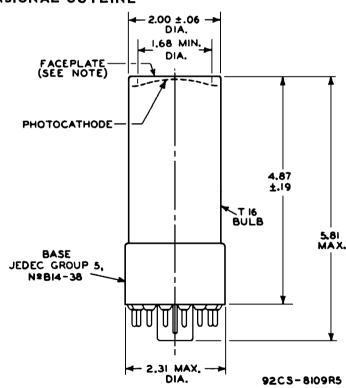
Pin 10: Dynode No.10

Pin 11: Anode

Pin 12: Internal Connection -

Do Not Use

Pin 13: Focusing Electrode


Pin 14: Photocathode

DY6 DY7 DY8 DY9 DY5 6 7 8 9 DY10 DY4 4 H H II P DY3 2 1 14 G DY2 1 K

DIRECTION OF RADIATION: INTO END OF BULB

14AA

DIMENSIONAL OUTLINE

DIMENSIONS IN INCHES

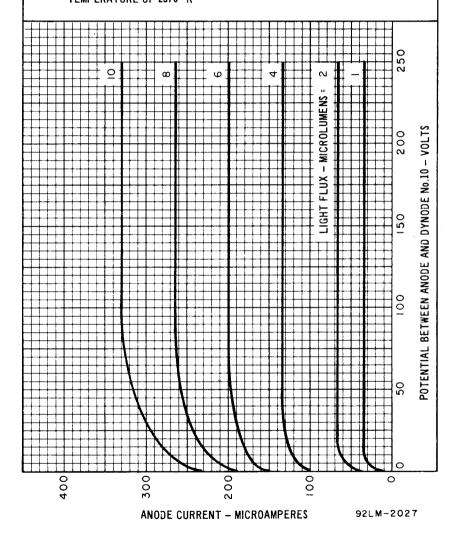
 \mathbb{Q} of bulb will not deviate more than $2^{\mathbf{0}}$ in any direction from the perpendicular erected at the center of bottom of the base.

Note: Within 1.68" diameter, deviation from flatness of external surface of faceplate will not exceed 0.010" from peak to valley.

TYPICAL ANODE CHARACTERISTICS

CATHODE-TO-DYNODE-No.1 VOLTS = 280

DYNODE-No.1-TO-DYNODE-No.2 VOLTS = 220


DYNODE-No.2-TO-DYNODE-No.3 VOLTS = 230

DYNODE-No.3-TO-DYNODE-No.4 VOLTS = 185

EACH SUCCEEDING DYNODE-STAGE VOLTS = 155

FOCUSING ELECTRODE IS CONNECTED TO THE ARM OF A POTENTIOMETER BETWEEN CATHODE AND DYNODE-No.1. FOCUSING ELECTRODE VOLTAGE IS ADJUSTED BETWEEN 10% AND 60% OF DYNODE-No.1 POTENTIAL TO GIVE MAXIMUM ANODE CURRENT.

LIGHT SOURCE IS A TUNGSTEN-FILAMENT LAMP OPERATED AT A COLOR TEMPERATURE OF 28700 K

SENSITIVITY AND CURRENTAMPLIFICATION CHARACTERISTICS

THE SUPPLY VOLTAGE (E) IS ACROSS A VOLTAGE — WHICH DISTRIBUTES THE VOLTAGE AS FOLLO	
BETWEEN:	7.75% OF E Multiplied by:
CATHODE AND DYNODE No.1 DYNODE No.1 AND DYNODE No.2 DYNODE No.2 AND DYNODE No.3 DYNODE No.3 AND DYNODE No.4 EACH SUCCEEDING DYNODE STAGE	1.8 1.4 1.5 1.2 1.0
ANODE AND CATHODE FOCUSING ELECTRODE VOLTAGE IS ADJUSTED FOR MAXIMUM	12.9 ANODE CURRENT
SENSITIVITY - AMPERES/LUMEN SENSITIVITY - AMPERES/LUMEN TOO 100 100 100 100 100 100 100	10 ⁷ 86 4 2 10 ⁶ 86 4 2 10 ⁷ 10 ⁸ 1
800 9 1000 11 12 13 14 1500 ^{16 1} SUPPLY VOLTS (E) BETWEEN ANODE AND CATH	

TYPICAL DARK-PULSE SPECTRUM

CATHODE-TO-DYNODE No.1 VOLTAGE = 280

DYNODE No.1-TO-DYNODE No.2 VOLTAGE = 220

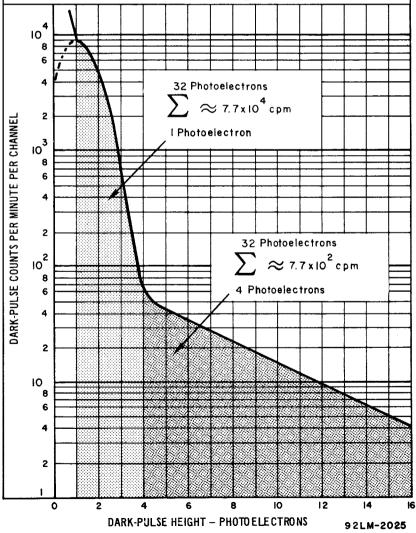
DYNODE No.2-TO-DYNODE No.3 VOLTAGE = 230

DYNOBE No.3-TO-DYNODE No.4 VOLTAGE = 185

EACH SUCCEEDING DYNODE-STAGE VOLTAGE = 155

ANODE-TO-CATHODE VOLTAGE = 2000

FOCUSING-ELECTRODE VOLTAGE IS ADJUSTED TO GIVE MAXIMUM ANODE CURRENT

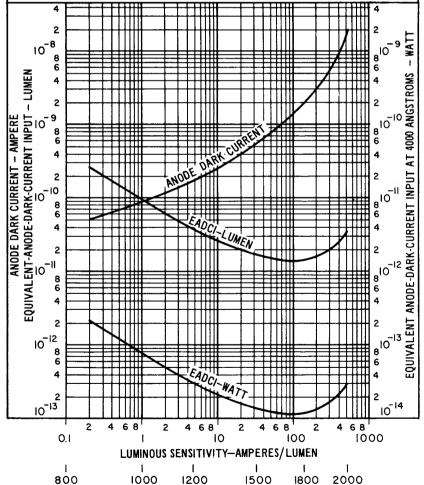

DASHED PORTION INDICATES LOCATION OF SINGLE PHOTOELECTRON PEAK. THIS PORTION OF CURVE IS NORMALIZED TO COINCIDE WITH SINGLE PHOTOELECTRON PEAK OF DARK PULSE SPECTRUM AND IS OBTAINED WITH PHOTOCATHODE FULLY ILLUMINATED BY A TUNGSTEN-FILAMENT LAMP OPERATED AT A LOW COLOR TEMPERATURE. DARK PULSES ARE SUBTRACTED.

SOLID-LINE PORTION INDICATES DARK-PULSE SPECTRUM.

TUBE TEMPERATURE = 220 C.

ONE PHOTOELECTRON PULSE HEIGHT = 4 COUNTING CHANNELS.

INTEGRATING TIME CONSTANT = 30 μ SEC. (R_L = 300 k, C = 100 pF).


TYPICAL DARK CURRENT AND EADCI CHARACTERISTICS

LUMINOUS SENSITIVITY IS VARIED BY ADJUSTMENT OF THE SUPPLY POTENTIAL (E) ACROSS A VOLTAGE DIVIDER WHICH DISTRIBUTES (E) AS FOLLOWS:

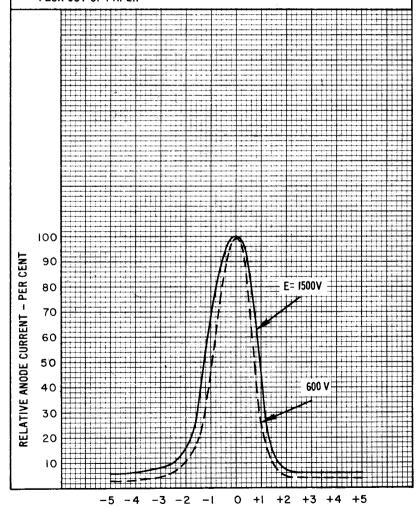
BETWEEN:	7.75% OF E Multiplied by:	
CATHODE AND DYNODE No.1	1.8	
DYNODE No.1 AND DYNODE No.2	1.4	
DYNODE No.2 AND DYNODE No.3	1.5	
DYNODE No.3 AND DYNODE No.4	1.2	
EACH SUCCEEDING DYNODE STAGE	1.0	
ANODE AND CATHODE	12.9	

FOCUSING ELECTRODE VOLTAGE IS ADJUSTED FOR MAXIMUM ANODE CURRENT

TUBE TEMPERATURE = 220 C

SUPPLY VOLTS (E) BETWEEN ANODE AND CATHODE

TYPICAL EFFECT OF INDICATED MAGNETIC FIELD ON ANODE CURRENT


SUPPLY VOLTAGE (E) ACROSS VOLTAGE DIVIDER PROVIDING 1/6 OF E BETWEEN CATHODE AND DYNODE No.1; 1/12 OF E FOR EACH SUCCEEDING DYNODE STAGE; AND 1/12 OF E BETWEEN DYNODE No.10 AND ANODE. FOCUSING-ELECTRODE VOLTAGE ADJUSTED TO GIVE MAXIMUM ANODE CURRENT.

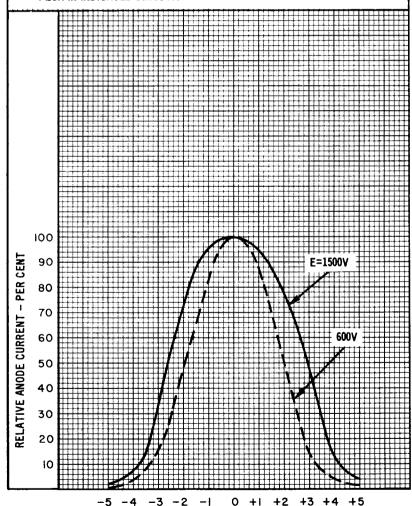
THE PHOTOCATHODE IS FULLY ILLUMINATED.

Н

POSITIVE VALUES OF MAGNETIC FIELD INTENSITY (H) ARE FOR LINES OF FLUX OUT OF PAPER

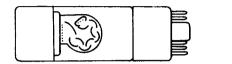
MAGNETIC FIELD INTENSITY - OERSTEDS

TYPICAL EFFECT OF INDICATED MAGNETIC FIELD ON ANODE CURRENT

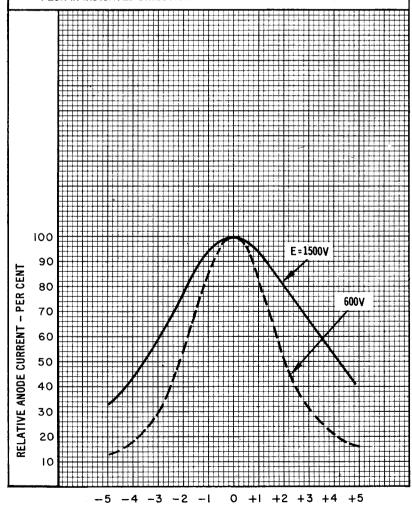

SUPPLY VOLTAGE (E) ACROSS VOLTAGE DIVIDER PROVIDING 1/6 OF E
BETWEEN CATHODE AND DYNODE No.1; 1/12 OF E FOR EACH SUCCEEDING DYNODE STAGE; AND 1/12 OF E BETWEEN DYNODE No.10 AND ANODE.
FOCUSING-ELECTRODE VOLTAGE ADJUSTED TO GIVE MAXIMUM ANODE
CURRENT.

THE PHOTOCATHODE IS FULLY ILLUMINATED.

POSITIVE VALUES OF MAGNETIC FIELD INTENSITY (H) ARE FOR LINES OF FLUX IN INDICATED DIRECTION


MAGNETIC FIELD INTENSITY - OERSTEDS

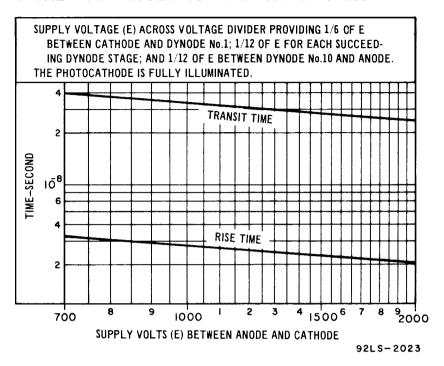
TYPICAL EFFECT OF INDICATED MAGNETIC FIELD ON ANODE CURRENT


SUPPLY VOLTAGE (E) ACROSS VOLTAGE DIVIDER PROVIDING 1/6 OF E
BETWEEN CATHODE AND DYNODE No.1; 1/12 OF E FOR EACH SUCCEEDING DYNODE STAGE: AND 1/12 OF E BETWEEN DYNODE No.10 AND ANODE.
FOCUSING-ELECTRODE VOLTAGE ADJUSTED TO GIVE MAXIMUM ANODE
CURRENT.

THE PHOTOCATHODE IS FULLY ILLUMINATED.

H


POSITIVE VALUES OF MAGNETIC FIELD INTENSITY (H) ARE FOR LINES OF FLUX IN INDICATED DIRECTION


MAGNETIC FIELD INTENSITY - OERSTEDS

SPECTRAL RESPONSE CHARACTERISTICS

TYPICAL TIME-RESOLUTION CHARACTERISTICS

